2024#Weng Z, Seper A, Pryalukhin A, Mairinger F, Wickenhauser C, Bauer M, Glamann L, Bläker H, Lingscheidt T, Hulla W, Jonigk D, Schallenberg S, Bychkov A, Fukuoka J, Braun M, Schömig-Markiefka B, Klein S, Thiel A, Bozek K, Netto GJ, Quaas A, Büttner R, Tolkach Y.
GrandQC: A comprehensive solution to quality control problem in digital pathologyNature Communications 2024 15, 10685
DOI#Kreten F, Büttner R, Peifer M, Harder C, Hillmer AM, Abedpour N, Bovier A, Tolkach Y.
Tumor architecture and emergence of strong genetic alterations are bottlenecks for clonal evolution in primary prostate cancerCell Systems 2024 Nov 7:S2405-4712(24)00302-8.
DOI#Abila E, Buljan I, Zheng Y, Veres T, Weng Z, Nackenhorst M, Hulla W, Tolkach Y, Wöhrer A, Rendeiro AF.
Tissue clocks derived from histological signatures of biological aging enable tissue-specific aging predictions from bloodBioRxiv 2024.11.14.618081 (Preprint)
Link#Mittmann G, Laiouar-Pedari S, Mehrtens HA, Haggenmüller S, Bucher TC, ..., Kather J, Tolkach Y, Brinker T.
Pathologist-like explainable AI for interpretable Gleason grading in prostate cancerarXiv preprint arXiv:2410.15012 (Preprint)
Link#Kludt C, Wang Y, Ahmad W, Bychkov A, Fukuoka J, Gaisa N, Kühnel M, Jonigk D, Pryalukhin A, Mairinger F, Klein F, Schultheis AM, Seper A, Hulla W, Brägelmann J, Michels S, Klein S, Quaas A, Büttner R, Tolkach Y.
Next-generation lung cancer pathology: Development and validation of diagnostic and prognostic algorithmsCell Reports Medicine 2024 Aug 14:101697.
DOI#Harder C, Pryalukhin A, Quaas A, Eich ML, Tretiakova M, Klein S, Seper A, Heidenreich A, Netto GJ, Hulla W, Büttner R, Bozek K, Tolkach Y.
Enhancing Prostate Cancer Diagnosis: Artificial intelligence-Driven Virtual Biopsy for Optimal Magnetic Resonance Imaging-Targeted Biopsy Approach and Gleason Grading StrategyModern Pathology 2024 Jul 17;37(10):100564.
DOI#Jung JO, Pisula JI, Beyerlein X, Lukomski L, Knipper K, Abu Hejleh AP, Fuchs HF, Tolkach Y, Chon SH, Nienhüser H, Büchler MW, Bruns CJ, Quaas A, Bozek K, Popp F, Schmidt T.
Deep Learning Histology for Prediction of Lymph Node Metastases and Tumor Regression after Neoadjuvant FLOT Therapy of Gastroesophageal AdenocarcinomaCancers (Basel). 2024 Jul 3;16(13):2445.
DOI#Weiten R, Storz E, Kessler C, Sperber L, Spohn HE, Pfister D, Nestler T, Tolkach Y, Linden F, Wirtz R, von Brandenstein M, Krausewitz P, Heidenreich A.
Trophoblast cell surface antigen-2: a promising new biomarker and potential therapeutic target in penile squamous cell carcinomaBJU Int. 2024 Jun 19.
DOI#Klein S, Tolkach Y, Reinhardt HC, Buettner R, Quaas A, Helbig D.
Proteomic analysis of pleomorphic dermal sarcoma reveals a fibroblastic cell of origin and distinct immune evasion mechanismsScientific Reports 2024 May 31;14(1):12516
DOI#Giammanco A, Bychkov A, Schallenberg S, Tsvetkov T, Fukuoka J, Pryalukhin A, Mairinger F, Seper A, Hulla W, Klein S, Quaas A, Büttner R, Tolkach Y.
Fast-track development and multi-institutional clinical validation of an artificial intelligence algorithm for detection of lymph node metastasis in colorectal cancerModern Pathology 2024 Apr 16:100496
DOI#Fuchs M, Konstantin M, Schrade N, Schweizer L, Tolkach Y, Mukhopadhyay A.
Sliding Window Optimal Transport for Open World Artifact Detection in Histopathology.IEEE J Biomed Health Inform. 2024 Apr 1.
DOI#Eminaga O, Abbas M, Kunder C, Tolkach Y, Han R, Brooks JD, Nolley R, Semjonow A, Boegemann M, West R, Long J, Fan RE, Bettendorf O.
Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathologyScientific Reports 2024;14:5284
DOI#Rieger C, Pfister D, Kastner L, Eich ML, Quaas A, Tolkach Y, Heidenreich A.
Cystic Pelvic Masses in Men: A Presentation of Uncommon Cases and a Literature ReviewClinical Genitourinary Cancer 2024; 22:523-534
DOI2023#Lamberty H, Scheel AH, Tolkach Y, Gebauer F, Schoemig-Markiefka B, Zander T, Buettner R, Rueschoff J, Bruns CJ, Schroeder W, Quaas A.
Tumour area infiltration and cell count in endoscopic biopsies of therapy-naive upper GI tract carcinomas by QuPath analysis - implications for predictive biomarker testingScientific Report 2023; 13: 17580
DOI#Babendererde N, Fuchs M, Gonzalez C, Tolkach Y, Mukhopadhyay A.
Jointly Exploring Client Drift and Catastrophic Forgetting in Dynamic Learning.arXiv:2309.00688 (Preprint)
DOI# Griem J, Eich ML, Schallenberg S, Pryalukhin A, Bychkov A, Fukuoka J, Zayats V, Hulla W, Munkhdelger J, Seper A, Tsvetkov T, Mukhopadhyay A, Sanner A, Stieber J, Fuchs M, Babendererde N, Schömig-Markiefka B, Klein S, Buettner R, Quaas A, Tolkach Y.
Artificial intelligence-based tool for tumor detection and quantitative tissue analysis in colorectal specimensModern Pathology 2023; 36: 100327
DOI # Klein S, Wuerdemann N, Demers I, Kopp C, Quantius J, Charpentier A, Tolkach Y, Brinker K, Sharma S, George J, Hess J, Stögbauer F, Lacko M, Struijlaart M, van den Hout M, Wagner S, Wittekindt C, Langer C, Arens C, Buettner R, Quaas A, Reinhardt H, Speel E, Klussmann J.
Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients.NPJ Digital Medicine 2023; 6: 152
DOI# Tolkach Y, Ovtcharov V, Pryalukhin A, Eich ML, Gaisa NT, Braun M, Radzhabov A, Quaas A, Hammerer P, Dellmann A, Hulla W, Haffner MC, Reis H, Fahoum I, Samarska I, Borbat A, Pham H, Heidenreich A, Klein S, Netto G, Caie P, Büttner R.
An international multi-institutional validation study of the algorithm for prostate cancer detection and Gleason grading.NPJ Precision Oncology 2023; 7: 77
DOI# Klein S, Schulte A, Arolt C, Tolkach Y, Reinhardt HC, Buettner R, Quaas A.
Intratumoral abundance of M2-macrophages is associated with unfavorable prognosis and markers of T-cell exhaustion in small cell lung cancer patients.Modern Pathology 2023; 36:100272
DOI# Tolkach Y, Klein S, Tsvetkov, T Buettner R.
Künstliche Intelligenz und digitale Pathologie als Treiber der Präzisionsonkologie.
Die Onkologie 2023, 1-9.
DOI# Tolkach Y, Wolgast LM, Damanakis A,
Pryalukhin A, Schallenberg S, Hulla W, Eich M.-L., Schroeder W, Mukhopadhyay A, Fuchs M, Klein S, Bruns C, Büttner R, Gebauer F, Schömig-Markiefka B, Quaas A.
Artificial intelligence for tumor detection and histological regression grading in oesophageal adenocarcinomas: a retrospective algorithm development and validation studyLancet Digital Health 2023, 5, E265-E275.
DOI2022 and before# Wagner N, Fuchs M, Tolkach Y, Mukhopadhyay A.
Federated Stain Normalization for Computational Pathology.
Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part II. P. 14-23.
DOI# Tolkach Y, Kremer A, Lotz G, Schmid M, et al.
Androgen Receptor Splice Variants Contribute to the Upregulation of DNA Repair in Prostate Cancer.Cancers 2022;14(18):4441.
DOI# Schömig-Markiefka B, Pryalukhin A, Hulla W, Bychkov A, Fukuoka J, Madabhushi A, Achter V, Nieroda L, Büttner R, Quaas A, Tolkach Y.
Quality control stress test for deep learning-based diagnostic model in digital pathology.Mod Pathol 2021; 34(12):2098-2108.
DOI# von Hagen F, Gundert L, Strick A, Klümper N, Schmidt D, Kristiansen G, Tolkach Y, Toma M, Ritter M, Ellinger J.
N6-Methyladenosine (m6A) readers are dysregulated in renal cell carcinoma.Mol Carcinog. 2021 May;60(5):354-362.
DOI# Heidenreich A, Paffenholz P, Nestler T, Tolkach Y, Pfister D.
Targeted Therapy in Patients with Metastatic Male Germ Cell Tumors.Urol Int. 2021;105(7-8):720-723.
DOI# Tolkach Y, Zarbl R, Bauer S, Ritter M, Ellinger J, et al.
DNA Promoter Methylation and ERG Regulate the Expression of CD24 in Prostate Cancer. Am J Pathol. 2021; 191(4):618-630.
DOI# Tolkach Y, Dohmgörgen T, Toma M, Kristiansen G.
High-accuracy prostate cancer pathology using deep learning.
Nature Mach Intell 2020; 2:411–418.
DOI# Kremer A, Kremer T, Kristiansen G, Tolkach Y.
Where is the limit of prostate cancer biomarker research? Systematic investigation of potential prognostic and diagnostic biomarkers.BMC Urol. 2019 Jun 6;19(1):46.
DOI# Eminaga O, Abbas M, Tolkach Y, Nolley R, Kunder C, Semjonow A et al.
Biologic and Prognostic Feature Scores from Whole-Slide Histology Images Using Deep Learning.arXiv preprint arXiv 2019:1910.09100
DOI# Eminaga O, Tolkach Y, Kunder C, Abbas M, Han R, Nolley R et al.
Deep Learning for Prostate Pathology.arXiv preprint arXiv 2019:1910.04918
DOI# Tolkach Y, Thomann S, Kristiansen G.
Three-dimensional reconstruction of prostate cancer architecture with serial immunohistochemical sections: hallmarks of tumour growth, tumour compartmentalisation, and implications for grading and heterogeneity. Histopathology. 2018 May;72(6):1051-1059.
DOI>
More publications